###
Demonstration and Analysis of Dihybrid Crosses

The students will review related vocabulary, watch the teacher model a dihybrid cross, and then perform a dihybrid cross and answer questions about the outcomes with a partner.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Enzymes

Given illustrations or scenarios, the student will identify an enzyme and the outcome of its action.

###
Animal System Interactions

Given illustrations, descriptions, or scenarios, students will describe the interactions that occur among systems in humans.

###
Mechanisms of Genetics: Protein Synthesis

Given illustrations or partial DNA or mRNA sequences, students will identify the processes and purposes of transcription and translation.

###
Abiotic Cycles

Given scenarios, illustrations, or descriptions, the student will describe the flow of matter through carbon and nitrogen cycles and describe the consequences of disrupting these cycles.

###
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.

###
Biological Systems: System Organization

Given illustrations or descriptions, students will relate the levels of organization to each other and to the whole system.

###
Biological Systems: Homeostasis

Identify and describe internal feedback mechanisms involved in maintaining homeostasis given scenarios, illustrations, or descriptions.

###
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.

###
Symbiosis

Given scenarios or illustrations, the student will determine the nature and type of relationship between organisms, including parasitism, commensalism, mutualism, and competition.

###
Organisms' Adaptations

Given scenarios, illustrations. or descriptions, the student will compare variations and adaptations of organisms in different ecosystems.

###
Homeostasis—Succession

Given scenarios, illustrations, or descriptions, the student will identify the process of ecological succession and the impact that succession has on populations and species diversity.

###
Cell Homeostasis: Osmosis

The focus of this resource is cell homeostasis and, more specifically, osmosis. Students investigate the concept through a virtual lab, recording and analyzing data, creating sketches to represent vocabulary, and discovering the role of aquaporins in water transport through the cell membrane.

###
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.

###
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.

###
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.

###
Functions and their Inverses

Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.